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Predicting the dispositional kinetics of
xenobiotics in humans from data acquired
in animals is an important enterprise.
Predicted pharmacokinetic parameters have
application in drug development such as in
the prediction of initial doses of investiga-
tional new drugs for human studies.
Predicted toxicokinetic parameters have
applications in toxicology such as in the
prediction of the time course of exposure
after acute or chronic challenge with toxic
substances. Knowledge of the time course
may be helpful in predicting both the
aggressiveness of treatments and the dura-
tion of such treatments. Another applica-
tion is in carcinogenic risk assessment.

Estimates of toxicokinetic parameters in
humans for individual xenobiotics may be
attained either through interspecies allomet-
ric scaling (1,2) or through physiologically
based pharmacokinetic (PBPK) modeling
(3), which ultimately must invoke an inter-
species scale-up as well, at least for data
elicited exclusively from an animal model
(4). In allometric scaling, kinetic variables
such as volume of distribution and half-life
are scaled based on the assumption that they
are proportional to a power of body weight,
and xenobiotic clearance is additionally fac-
tored by the species' life span (5).

Interspecies scaling as it relates to
dosimetry centers on adjustments based on
species mass (i.e., body weight), though
some prefer that adjustments from one
species to another take account of body sur-
face area rather than body weight. For
example, the U.S. Environmental Pro-
tection Agency suggests that doses be scaled

from rats to humans on the basis of the
ratio of human body weight to rat body
weight (BW) raised to the 0.667 power, as
follows (6):

Dosehuman = Doserat (BWhuma*/BWrat)0667 (1)

Recent proposals suggest that the exponent
used should be 0.75 (7) rather than 0.667,
and this value appears to be justifiable on
the basis that basal metabolic rate is a func-
tion of mass raised to the 0.75 power as
shown (8):

Basal metabolism = aM0 75 (2)

where a is a mass coefficient set at 70 kcal
and M is mass in kilograms. Related para-
meters that scale to BW0_75 include alveo-
lar ventilation, cardiac output, renal clear-
ance, and oxygen consumption (9). Most
often, the allometric scaling of kinetic vari-
ables is undertaken on a case-by-case basis
(i.e., xenobiotic by xenobiotic), with kinet-
ic parameters for individual xenobiotics
evaluated in each of multiple species (10).

We were interested in determining
whether reasonable predictions of two
kinetic parameters of xenobiotics, volume
of distribution and half-life, could be
made for humans if one had knowledge of
those parameters from rat data only. Our
working hypothesis was that a useful pre-
dictive mathematical relationship was like-
ly to exist if one regressed known human
toxicokinetic variable estimates (volume of
distribution and half-life) against known
data for the same variables in rats, and did

so across a large series of xenobiotics. Such a
relationship would establish a single model
from which volume of distribution and
half-life for any xenobiotic could be pre-
dicted for humans and, further, could be
predicted entirely from the estimates of
those variables in rats.

Methods
Average values for rats and humans for vol-
umes of distribution of 100 xenobiotics and
for half-lives of 103 xenobiotics were
obtained from the literature. Most of the
xenobiotics were "drugs" insofar as there is
a substantially larger literature for human
pharmacokinetic parameters than toxicoki-
netic parameters. A table denoting each
xenobiotic, the average toxicokinetic or
pharmacokinetic parameters for both rats
and humans and the source of the data are
given in the appendix.

We modeled half-life and volume of dis-
tribution data using the statistical computa-
tion program, S-Plus (Mathsoft Inc.,
Seattle, Washington), which provided con-
fidence limits for model predictions. The
program ran on a SPARCserver 10 comput-
er. Our aim was to find a simple yet effec-
tive model describing the human data as a
function of that of the rat. Further, it was
important to identify confidence limits on
predictions that may arise from such a
model. Noting how the variability in each
data set increases linearly with the values for
the rat for each parameter we decided to
explore logarithmic models because these
models are inherently multiplicative in the
error terms, as will be seen below.

Results
After confirming that quadratic terms were
not statistically significant, and upon noting
that the logarithmic transformations yielded
a standard deviation for human values that
was constant across rat values (see Figs. 1 and
2), a linear model that is logarithmic in both
variables was selected for both data sets:

log(Pum ) = a + [b x log(P,ra)] + e,
i= 1,2,...,n (3)
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where P denotes the kinetic parameter
(half-life or volume of distribution) and the
errors, e1, are assumed to be normally dis-
tributed with a constant standard devia-
tion, (T. This model can be rewritten in
more familiar terms as:

P =a xPb' human i irat
(4)

where ai depends on both the parameter cc
and the individual errors, e,. Thus, the vari-
ability of the actual human parameter value
is proportional to the rat value raised to the
power b.

Results of the regression analysis from
S-Plus are given in Table 1. Included are

the parameter estimates along with their
standard errors for each data set. All the
parameters are significant with p-values
based on the t-distribution <0.0001. The
X2 values are 0.737 and 0.754 for half-life
and volume of distribution analyses, respec-

tively, demonstrating a reasonably good fit
in both cases. The estimated regression
curves, or prediction lines, for half-life and
volume of distribution are shown in Figures
1 and 2, respectively. The exponents (b) are

0.83 for half-life and 0.91 for volume of
distribution, respectively. Also given in
these figures are the 80%, 90%, and 95%
prediction intervals for a new human value
corresponding to the given rat value. These
curves take into account the possible errors

in the prediction line itself (in the estimat-
ed a and b) and the error inherent to a new

observation (as quantified by the regression
estimate of a).

The validity of the regression equations
was confirmed as follows: for the half-life
data, the regression equation along with
the prediction intervals was computed
using a subset of the data originally
obtained (i.e., all but 18 of the data points
ultimately used). The additional 18 data
points (these are marked with footnote a in
the data listings in the appendix) obtained
later were compared to the regression
results with these points excluded. These
points followed basically the same pattern
as the larger data set. Furthermore, two of
these points fell outside the 80% predic-
tion intervals (about three or four would
have been expected to do so); none of these
points fell outside the 90% prediction
intervals (one or two would have been pre-

dicted to do so); and none fell outside the
95% prediction intervals (one or fewer
would be expected). As the regression rela-
tionship thus proved to be useful in pre-

dicting human half-lives from rat half-lives,
we concluded that the regression results
obtained were valid. Note that the regres-

sion results in the tables and figures employ
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Figure 1. Human half-lives for 103 xenobiotics plotted against rat half-lives. Half-lives are given in hours.

Both axes are logarithmically scaled.
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Table 1. Regression analysis for human versus rat parameters

Estimate SE t p Residual SE Multiple R2
Half-life
Intercept (a) 1.58 0.083 19.09 0.0000
Slope (b) 0.83 0.041 16.83 0.0000

0.835 0.737
Volume
Intercept (a) -0.35 0.077 -4.6 0.0000
Slope (b) 0.91 0.052 17.3 0.0000

0.766 0.754

Environmental Health Perspectives * Volume 104, Number 4, April 1996

1000.0

100.0

401



Articles - Bachmann et al.

the full data set [i.e., the data include both
the original and expanded (additional 18
observations) half-life data].

The prediction intervals in Figures 1
and 2 are supplemented by Tables 2 and 3,
which present the intervals for a wide range
of rat values in numerical form.

To illustrate the use and interpretation
of the information contained in these tables,
consider a newly encountered substance, X,
whose human half-life we desire to ascertain.
Say that from a toxicokinetic study in rats, X
is estimated to exhibit a half-life of 0.8 hr.
Table 2 provides the following information
about the prediction of the human half-life.
First, the prediction, or best guess of the
human half-life is 4.02 hr. If, for example,
we desired to have an interval in which we
were 90% confident that the human half-
life would lie, Table 3 indicates that
1.0-16.2 hr is the interval. That is, based on
the results of this regression analysis, we can
be 90% certain that the human half-life for
X is between 1.0 and 16.2 hr. If interpola-
tion is required, the table is constructed in
such a way that linear interpolation should
be adequate. For instance, if the rat half-life
had been estimated to be 2.7 hr instead of
0.8, then interpolating linearly between the
predicted human values of 8.60 (for a rat
half-life of 2 hr) and 12.04 (for a rat half-life
of 3 hr), the prediction for human half-life
would be 11.01 hr.

Discussion
In contrast to customary scaling studies, we
wanted to determine whether a model
could be developed for predicting the toxi-
cokinetic or pharmacokinetic parameters of
any xenobiotic in humans based expressly
on the availability of estimates of those
parameters in rats. To do so we regressed
Phuman against brat for over 100 xenobi-
otics. The data were accommodated by the
model:

b
P =aP
ihuman irat

(5)

which, employing the logarithmic transfor-
mation, accounts for over 75% of the vari-
ance in the relationship between Phuman and
Prat' This is particularly striking for a variety
of reasons, including, though not limited
to, the following: 1) multiple strains of rats
were used in assimilating the data sets; 2)
some of the data were acquired from male
rats and some from female rats; 3) it was
assumed, though not necessarily demon-
strated, that elimination kinetics in all cases
was first order. In fact, some of the xenobi-
otics exhibited clear dose-dependent kinet-
ics in rats, and when such was the case the
kinetic parameters were selected from the

Table 2. Table for predicting human half-life from rat half-life

Rat
half-life
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
l
2
3
4
5
6
7
8
9
10
20
30
40
50
60
70
80
90
100
200
300
400
500
600
700
800
900
1000
1100

95%
0.019
0.034
0.048
0.062
0.074
0.087
0.099
0.110
0.122
0.13
0.24
0.34
0.43
0.51
0.60
0.68
0.76
0.84
0.92
1.63
2.27
2.88
3.46
4.02
4.56
5.08
5.60
6.1

10.7
14.9
18.8
22.6
26.2
29.6
33.0
36.3
39.5
68.9
95.2

119.8
143.2
165.5
187.1
208.1
228.5
248.4
267.9

Lower
90%
0.025
0.045
0.064
0.081
0.098
0.114
0.130
0.146
0.161
0.18
0.31
0.44
0.56
0.68
0.79
0.89
1.00
1.10
1.20
2.13
2.98
3.78
4.54
5.28
5.99
6.68
7.36
8.0

14.1
19.7
24.9
29.8
34.6
39.2
43.6
48.0
52.3
91.4

126.7
159.7
191.0
221.1
250.1
278.3
305.8
332.7
359.0

80%
0.034
0.062
0.087
0.111
0.134
0.156
0.178
0.199
0.220
0.24
0.43
0.60
0.77
0.92
1.07
1.22
1.36
1.50
1.64
2.91
4.07
5.16
6.20
7.21
8.19
9.14

10.06
11.0
19.4
27.0
34.1
41.0
47.5
53.9
60.1
66.1
72.0
126.5
175.7
221.7
265.6
307.7
348.5
388.1
426.8
464.6
501.7

lowest dose tested; 4) the sizes and ages of
rats used were not uniform; 5) there was
insufficient technical detail (e.g., sampling
times, duration of sampling, number of
subjects) to determine whether all studies
from which kinetic data were gathered were
structured appropriately (i.e., the goodness
of the underlying data cannot be validated);
6) data for each xenobiotic were published
generally without regard to chirality consid-
erations; 7) data from a single experiment
in a single sample of subjects were taken to
be representative; 8) data for humans gener-
ally did not take account of sex; 9) no
accommodation was made for the differ-
ences in protein-binding between species;
10) routes of administration were ignored;

Human
half-life
estimate
0.106
0.189
0.264
0.335
0.404
0.469
0.533
0.596
0.657
0.72
1.27
1.78
2.26
2.72
3.17
3.60
4.02
4.44
4.84
8.60

12.04
15.28
18.39
21.39
24.31
27.15
29.94
32.7
58.1
81.3
103.2
124.1
144.4
164.1
183.3
202.1
220.6
391.9
548.6
696.4
837.9
974.7
1107.6
1237.3
1364.3
1488.9
1611.3

80%
0.327
0.574
0.799
1.011
1.213
1.408
1.598
1.782
1.963
2.14
3.78
5.28
6.70
8.05
9.36
10.63
11.88
13.09
14.29
25.40
35.59
45.24
54.49
63.46
72.18
80.71
89.07
97.3

174.0
244.6
311.6
376.1
438.6
499.5
559.2
617.7
675.2
1214.2
1712.7
2186.8
2643.8
3087.5
3520.5
3944.6
4361.2
4771.1
5175.1

Upper
90%
0.451
0.790
1.098
1.387
1.664
1.930
2.189
2.441
2.687
2.93
5.17
7.21
9.14

10.99
12.77
14.51
16.20
17.86
19.49
34.66
48.58
61.76
74.42
86.69
98.64
110.32
121.77
133.0
238.3
335.6
427.9
516.9
603.3
687.5
770.0
851.1
930.8
1679.5
2374.3
3036.7
3676.1
4297.9
4905.5
5501.3
6086.9
6663.7
7232.7

95%
0.598
1.045
1.450
1.830
2.193
2.543
2.882
3.213
3.536
3.85
6.79
9.47

12.00
14.42
16.76
19.04
21.26
23.44
25.57
45.47
63.76
81.09
97.74
113.88
129.61
144.99
160.08
174.9
313.9
442.4
564.7
682.7
797.2
909.1
1018.7
1126.4
1232.4
2230.5
3159.3
4046.6
4904.4
5739.6
6556.7
7358.6
8147.4
8925.0
9692.5

11) elimination pathways were not identical
for all xenobiotics in both species; and 12)
when explicit weights were not provided,
rat weights were set at 0.25 kg and human
weights at 70 kg.

Inspection ofTables 2 and 3 shows that
the 80% confidence limits for each predict-
ed human parameter embrace an approxi-
mate 10-fold range of values. The full
range of values for a given parameter for a
given xenobiotic when estimated directly
even from a single small sample of humans
may also extend an order of magnitude or
more. It is possible that the range of pre-
dicted values could have been tightened,
and the scatter of data around the predic-
tion line could have been diminished if
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Table 3. Table for predicting human volume of distribution from rat volume of distribution

Rat
volume
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
2
3
4
5
6
7
8
9
10
20
30
40
50
60
70
80
90

95%
0.002
0.004
0.006
0.008
0.010
0.012
0.013
0.015
0.017
0.019
0.035
0.051
0.066
0.081
0.096
0.111
0.125
0.139
0.15
0.29
0.41
0.53
0.65
0.77
0.88
0.99
1.11
1.21
2.25
3.22
4.15
5.06
5.94
6.80
7.65
8.48

Lower
90%
0.003
0.005
0.008
0.010
0.013
0.015
0.017
0.019
0.022
0.024
0.045
0.065
0.085
0.104
0.123
0.142
0.160
0.178
0.20
0.37
0.53
0.69
0.84
0.99
1.14
1.28
1.42
1.56
2.90
4.16
5.37
6.54
7.69
8.81
9.91

11.00

80%
0.004
0.007
0.011
0.014
0.017
0.020
0.023
0.026
0.029
0.032
0.060
0.087
0.113
0.139
0.164
0.189
0.213
0.237
0.26
0.49
0.70
0.91
1.18
1.32
1.51
1.71
1.90
2.08
3.88
5.57
7.20
8.78

10.33
11.84
13.34
14.81

data sets had been developed prospectively
rather than retrospectively and attention
had been paid to the itemized points above.

The sine qua non for risk assessment
purposes appears to be PBPK modeling,
which mathematically describes uptake,
distribution, metabolism, and excretion of

Human
volume
estimate
0.011
0.020
0.029
0.038
0.046
0.055
0.063
0.071
0.079
0.087
0.164
0.236
0.307
0.376
0.443
0.510
0.575
0.640
0.70
1.32
1.91
2.48
3.03
3.58
4.11
4.64
5.17
5.69

10.66
15.40
19.99
24.48
28.88
33.22
37.49
41.72

80%
0.031
0.057
0.082
0.105
0.128
0.151
0.174
0.196
0.217
0.239
0.445
0.641
0.831
1.016
1.198
1.377
1.554
1.729
1.90
3.57
5.16
6.71
8.23
9.72

11.19
12.65
14.09
15.52
29.32
42.60
55.54
68.24
80.77
93.14
105.39
117.54

Upper
90%
0.041
0.076
0.109
0.141
0.172
0.202
0.232
0.261
0.290
0.319
0.593
0.853
1.105
1.352
1.593
1.832
2.067
2.299
2.53
4.75
6.87
8.93

10.96
12.95
14.92
16.86
18.79
20.70
39.20
57.04
74.46
91.59

108.50
125.22
141.79
158.23

95%
0.054
0.099
0.141
0.182
0.222
0.261
0.299
0.337
0.374
0.411
0.762
1.096
1.419
1.735
2.045
2.350
2.652
2.950
3.25
6.09
8.82

11.47
14.08
16.64
19.17
21.68
24.17
26.63
50.54
73.63
96.23

118.48
140.45
162.21
183.79
205.22

chemicals for physiologically relevant tissue
compartments (11,12). However, 24 or
more physiological, physicochemical, and
enzyme kinetic parameters must be known
for a given xenobiotic in a given animal
model in order for PBPK models to accu-
rately simulate the time course of xenobi-

otics in tissue compartments. Those active
in the field point to the difficulty and
expense associated with the development of
comprehensive models (12).

The simple model presented here
allows for the prediction of body burdens
of xenobiotics during chronic exposure if
the exposure rate is known:

As= E(1.44 xtl2) (6)

where ASS is the average amount of xenobi-
otic in the body at steady-state and E is the
exposure rate (the fraction of dose absorbed
during each exposure period). Alter-
natively, exposure rates can be estimated
from measurement of an average steady-
state plasma concentration:

E= FD/t = C (V/1.44) x t112 (7)

where D is the dose, F is the fraction of the
dose absorbed, Vis the volume of distribu-
tion, X is the interval of exposure, and Css
is the measured average steady-state con-
centration of the xenobiotic. To the extent
that toxicity or carcinogenicity is a func-
tion of reactive metabolites, additional
information would be required such as tar-
get tissue burdens of such metabolites at
steady state. We do not propose that the
simple model developed in this paper
ought to supplant other strategies incorpo-
rated into risk assessment models, be used
to predict initial doses of xenobiotics in
humans, or be used to gauge the duration
of exposures to xenobiotic challenges.
Nevertheless, in an era of cost conscious-
ness, it may be useful to apply simple
strategies for such purposes when circum-
stances permit, and it may be instructive to
ascertain those circumstances in which sim-
ple models may be as usefully informative
as far more complex ones.

Appendix
Tabulation of Kinetic Parameters in Rats and Humans for 120 Xenobiotics

Volume of distribution (I/kg)
Xenobiotic Rat Ref. Human Ref.
ALO 1567 0.45 (13) 0.77 (13)
ALO 1576 0.97 (13) 2.40 (13)
3TC8
Aspirin 0.37 (14) 0.15 (15)
AZT8 2.12 ( 16) 1.40 ( 16)
CSFa
FCE 22101 0.05 (17) 0.24 (17)
L-DOPA 9.8 (18) 1.65 (19)
PCP (phency- 23.2 (20) 6.20 (20)
clidine)
MK476a
Acetaminophen 1.02 (21) 0.95 (15)
Acivicin 0.65 (22) 0.50 (15)
Acyclovir 0.7 (23) 0.69 (15)

Half-life (hr)
Rat Ref. Human Ref. Xenobiotic
15.59 (13) 63 (13) Alteplase
33.61 (13) 72 (13) Amiodarone
1.6 (117) 2.6 (117) Amitriptyline
0.07 (14) 0.29 (15) Amobarbital
0.39 (16) 1.35 (16) Amoxicillin
1.1 (118) 3.5 (119) Amphotericin B
0.09 (17) 0.74 (17) Antipyrine

Aprobarbital
2.2 (20) 16 (20) Atenolol

Baclofen
1.4 (120) 3.8 (120) Betamipron
0.27 (107) 2 (15) Hl-6a
1.44 (22) 9.5 (22) Brodifacouma
1.39 (23) 2.4 (108) Caffeine

Volume of distribution (I/kg) Half-life (hr)
Rat Ref. Human Ref. Rat Ref. Human Ref.
0.08 (24) 0.05 (15) 0.04 (109) 0.07 (109)

72.3 (25) 66 (15)
15.83 (26) 15 (15) 1.47 (26) 15.06 (15)
1.46 (27) 1.01 (27) 1.73 (27) 22.7 (27)
0.42 (28) 0.21 (15) 0.3 (28) 1.7 (15)
3.46 (29) 3.37 (15) 10.2 (29) 86 (125)
0.92 (30) 0.56 (31) 1.48 (28) 12 (110)

5.79 (99) 24 (119)
3.41 (32) 0.95 (15)
1.19 (33) 0.48 (34)
0.24 (35) 0.28 (35) 0.16 (35) 0.81 (35)

0.39 (121) 1.42 (121)
156 (123) 576 (122)

0.92 (36) 0.61 (15) 0.85 (36) 4.9 (15)

appendix continued
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appendix, continued

Volume of distribution (I/kg) Half-life (hr) Volume of distribution (I/kg) Half-life (hr)
Xenobiotic Rat Ref. Human Ref. Rat Ref. Human Ref. Xenobiotic Rat Ref. Human Ref. Rat Ref. Human Ref.

Carbamazepine 12.91 (37) 1.4 (15) Lithiuma 6.1 (135) 28.9 (135)
Cefadroxil 0.79 (38) 0.22 (15) 0.82 (38) 1.1 (15) Meberinea 0.48 (136) 2.5 (136)
Cefazolin 0.22 (39) 0.12 (15) 0.39 (39) 1.8 (15) Methadone 7.81 (82) 4.24 (15) 1.45 (82) 35 (15)
Cefmetazole 0.49 (39) 0.14 (39) 0.14 (39) 1.55 (39) Methotrexate 0.96 (51) 0.55 (15) 2.66 (51) 8.4 (51)
Cefodizime 0.18 (40) 0.19 (41) 1.82 (40) 1.6 (41) Methylmercurya 1776 (137) 1056 (138)
Cefoperazone 0.29 (39) 0.09 (15) 0.15 (39) 2.1 (15) Methysergide 1.43 (80) 0.93 (81) 0.02 (80) 0.75 (81)
Cefotetan 0.25 (39) 0.13 (15) 0.22 (39) 2.57 (15) Metoclopramide 1.13 (83) 2.68 (15) 0.33 (83) 5 (15)
Cefpiramide 0.26 (39) 0.11 (39) 0.32 (39) 5.41 (39) Metoprolol 6.72 (32) 4.16 (15) 0.66 (115) 3.2 (15)
Cefpirome 0.57 (42) 0.31 (43) Midazolam 1.64 (84) 1.1 (15) 0.28 (84) 1.9 (15)
Ceftizoxime 0.44 (44) 0.36 (15) 0.26 (44) 1.8 (15) Mitomycin Ca 0.47 (139) 0.67 (139)
Cephradine 0.43 (45) 0.25 (15) 0.81 (45) 0.77 (15) Morphine 2.87 (85) 3.3 (15) 0.46 (116) 1.9 (15)
Chlorpromazine 29.1 (46) 11.2 (46) 5.55 (46) 30 (15) Moxalactam 0.28 (39) 0.25 (15) 0.34 (39) 2.1 (15)
Cimetidine 1.36 (47) 1.0 (15) 0.4 (111) 2 (15) Nicardipine 1.28 (86) 1.1 (15) 0.13 (86) 1.3 (15)
Cisplatin 2.06 (48) 0.28 (15) 0.79 (48) 0.53 (15) Nicotine 5.70 (87) 2.6 (15) 1.16 (87) 2 (15)
Clavulanic acid 0.44 (49) 0.21 (15) Ofloxacin 1.54 (88) 2.95 (89)
Cocaine 17.2 (50) 2.0 (15) 0.85 (50) 0.8 (15) Oxazepama 4.5 (140) 6.8 (15)
Codeine 3.6 (50) 2.6 (15) 0.55 (124) 2.9 (15) Panipenem 0.19 (35) 0.18 (35)
Cyclophosphamide 0.9 (51) 0.78 (15) 2.49 (51) 5.25 (51) Pentamidinea 0.03 (141) 0.28 (141)
Cyclosporine 4.54 (52) 1.2 (15) 15.51 (52) 16 (52) Pentazocine 7.66 (90) 7.1 (15) 1.13 (90) 4.6 (15)
Diazepam 5.3 (53) 1.1 (15) 1.42 (53) 43 (15) Pentobarbital 1.64 (27) 0.99 (27) 2.26 (27) 22.3 (27)
Dideoxycytidine 0.98 (126) 1.2 (127) Phenobarbital 1.02 (27) 0.54 (15) 6.32 (27) 99 (15)
Diflunisal 0.13 (54) 0.10 (15) 1 (54) 11.55 (15) Phenprocoumona 17.4 (142) 128 (143)
Digoxin 3.48 (55) 9.19 (15) 2.5 (55) 39 (15) Phenylbutazone 0.24 (27) 0.10 (15) 4.17 (27) 56 (15)
Enprofylline 0.34 (56) 0.51 (56) 0.27 (56) 1.42 (128) Physostigmine 0.25 (144) 0.42 (145)
Erythropoietina 0.07 (57) 0.03 (58) 2.64 (57) 5 (58) Piroxicam 1.94 (91) 0.15 (15) 8.4 (91) 48 (91)
Ethanol 0.61 (59) 0.54 (15) Panipenem 0.08 (35) 0.84 (35)
Ethosuximide 0.70 (60) 0.72 (15) 5.5 (129) 33 (130) Prednisolone 1.74 (92) 1.5 (15) 0.2 (93) 2.2 (15)
Ethoxyacetic acida 7.2 (131) 42 (131) Prednisone 1.3 (93) 0.97 (15) 0.1 (93) 3.11 (15)
Etretinate 1.33 (61) 1.50 (62) Procainamide 3.72 (94) 1.9 (15) 0.69 (94) 3 (15)
Famotidine 1.65 (63) 1.15 (15) 0.44 (63) 2.83 (63) Propafenone 5.2 (95) 3.88 (95) 0.97 (95) 6.5 (95)
Felbamate 0.42 (64) 0.85 (65) 2.78 (64) 13.3 (64) Propranolol 5.3 (96) 4.3 (15) 0.72 (96) 2.78 (96)
Fentanyl 11.2 (66) 7.7 (112) 1.93 (112) 7.9 (112) Pyrimethamine 1.14 (97) 2.9 (15)
Fluconazolea 4 (132) 26.4 (132) Quinidine 6.0 (98) 2.7 (15) 2.05 (98) 6.2 (15)
Fluoxetine 15.9 (67) 35 (15) 3.92 (67) 42.1 (15) Secobarbital 0.97 (99) 1.5 (100) 0.89 (99) 26.5 (100)
Flurbiprofen 0.36 (68) 0.21 (69) Sertraline 23 (101) 25 (102) 4.5 (101) 24 (102)
Gabapentina 2 (133) 5.5 (133) Sulfadiazine 0.39 (103) 0.29 (15) 3.86 (103) 9.9 (15)
Gentamicin 0.6 (70) 0.31 (15) Sulfizoxazole 0.32 (103) 0.15 (15) 4.44 (103) 6.6 (15)
Hexobarbital 0.7 (27) 1.2 (15) 0.42 (134) 4.4 (134) Theophyllinea 0.50 (79) 0.50 (15) 2 (146) 7.3 (146)
Ibuprofen 0.55 (71) 0.15 (15) 1.31 (71) 2 (15) Ticarcillin 0.25 (49) 0.21 (15) 0.22 (49) 1.21 (15)
Imipramine 17.48 (72) 23 (72) 3.42 (113) 18 (15) Tolbutamide 0.22 (27) 0.10 (15) 1.82 (27) 7.2 (27)
Indomethacin 0.12 (73) 0.26 (15) 2.77 (114) 2.4 (15) Tolmetin 0.18 (104) 0.54 (15)
Isoniazid 0.63 (74) 0.67 (15) 0.74 (74) 3.1 (15) Trimethoprim 2.47 (105) 1.8 (15) 0.61 (105) 11 (15)
Isotretinoin 1.8 (75) 7 (15) Valproate 0.66 (27) 0.13 (27) 4.6 (27) 14 (15)
Ketoconazole 0.66 (76) 2.4 (15) 0.53 (76) 3.3 (15) Vancomycin 1.02 (106) 0.39 (15) 1.44 (106) 5.6 (15)
Ketoprofen 0.37 (77) 0.15 (15) Verapamil 1.6 (147) 4 (15)
Ketorolac 0.38 (78) 0.11 (78) 1.8 (78) 6.5 (78) Warfarin 0.20 (27) 0.14 (15) 11.1b (27,148) 37 (15)
Lidocaine 2.52 (79) 1.1 (15) 0.62 (79) 1.38 (15)

aDenotes subset of xenobiotics tested against model that had been developed without the subset (see Results).
bUnweighted average of mean values reported in Sawada et al. (27) and Takada and Levy ( 148).
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CAATI1ecogniVion Awara
The Johns Hopkins Center for Alternatives to Animal Testing (CAAT) would like to honor an individual or organization who
has made an outstanding contribution to the field of M5s alternatives and in vitro sciences. We invite the readers of this
journal to submit nominations. The award will be presented at the second World Congress on Alternatives and Animal
Use in the Life Sciences, to be held in October 1996 in Utrecht, The Netherlands. Deadline for receipt of nominations is
June 1, 1996. Please send your nomination, including a one-page description of why this individual or organization should
be recognized. Please include a curriculum vitae for individual nominees and a fact sheet or supporting documents for
organizations. A subcommittee of the CAAT Advisory board will review the nominations and select the recipient of the
CAAT Recognition Award.

Forward nominations to: Alan M. Goldberg, PhD., Johns Hopkins Center for Alternatives to Animal Testing
111 Market Place, Suite &40, baltimore, MP 21202-6709
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